IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Special representations of ¢, (+1(¥}) at the roots of unity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 29 1201
(http://iopscience.iop.org/0305-4470/29/6/008)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.71
The article was downloaded on 02/06/2010 at 04:09

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger9 (1996) 1201-1214. Printed in the UK

Special representations otf,(sl(IV)) at the roots of unity

Boucif Abdesselam
Centre de Physique ®orique, Ecole Polytechnique, 91128 Palaiseau Cedex, France

Received 18 September 1995, in final form 24 November 1995

Abstract. We show how to adapt the Gelfand—Zetlin basis for describing the special
representations dffy (s/(N)) wheng is a root of unity. The explicit construction of special
representations is presented in detail fo= 3.

1. Introduction

The present paper is a companion paper to [1], in which we presented an improvement of
[2] giving Gelfand—Zetlin construction of irreducible representation&/pfs/(N)) at roots

of unity independently of their nature. We have shown that it is possible to describe the
periodic, semi-periodic, nilpotent, usual and some special representatiog st N)) by

the fractional parts formalism. However, special representations generally need a special
treatment.

In this paper, we restrict ourselves to the quantum Lie algebra, where the raising and
lowering operators are nilpotent, i€’ = f/" = 0 and where the Cartan generatéfsare
such that" = (th)m = 1 (representations of this case were studied by Luszting [3]). A
classification of irreducible representationsiff(s/(3)) was done by Dobrev in [6].

The Gelfand-Zetlin basis in the form [1] is not yet totally adapted for special
representations. Note that the paper [7] provides the special representatidpgs o))
because the matrix elements do not contain denominators, and of course do not generate
divergence whem is a root of unity.

Our purpose is to provide a procedure that enables the construction of general special
representations by a suitable adaptation of the Gelfand—Zetlin basis.

In section 2, we give the general idea for the construction of special representations
of Ug(sI(N)). Explicit construction of the special representationsifgf(s/(3)) and an
example of explicit construction of flat representations based in the Gelfand—Zetlin pattern
are presented in section 3.

2. The Primitive Gelfand—Zetlin basis

2.1. The quantum algebidg (s/(N))

The quantum algebréd, (si(N)) [8,9] is defined by the generators, k,‘l, e, fi
i =1,...,N —1) and the relations
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kiej =q%eiki  kifi=aq"" fiki
ki — kit
[ei’ f}] = 31} P q71
[ei el =0 for |i—j|>1 (2.1)

eZeis1 — (g +q Heeisie + ei1e? =0
f2fizr— (@ +q O fifisafi + firaf2 =0.

The two last equations are called the 8aelations, anda;;); ;=1,.. -1 is the Cartan matrix

.....

of sI(N), i.e.
2 for i=
ajj = -1 for j=ix 1 (22)
0 for |i—j|>1.

Let us now define the adapted Gelfand-Zetlin basis for the representatidpgsofN)),
the corresponding states are calfmimitive vectorsof Gelfand—Zetlin pattern.

2.2. Primitive vectors of the Gelfand—Zetlin basis
The states are

Pin Pon -+ DPN-LN PNN
PiN-1 s PN-1,N-1

lp) = (2.3)

P12 P22
P11

(with respect to [2], we usg;; = h;; —i instead of;;). The primitive Gelfand—Zetlin basis
[10] is labelled by%N(N +1) numbersp;;. The first line of indices determines theghest
weight of the representations, whereas the others move by stegdl ainder the action
of the raising and lowering generators. The whole sep;g6 is defined up to an overall
constant. One can constrain, for examplep;y, or pyy, to be zero. For the classical case
and whenyg is generic, the states (2.3) within the same moduigp]y) are distinguished

by pij,i,j =1,..., N —1, which assume values consistent with the triangular inequalities
Dij+1— Dij € Z4
! ! o (2.4)
pi,j—pi+1,j+1—1€Z+ l,]:l,...,N—l
or
Dij+1 2 Dij > Pi+1,j+1- (2.5)
The dimension oV ([p]y) is given by
N-1 N
[TT1]1wn—rm
. i=1 j=i+1
dimv ([ply) = ' : (2.6)

[Twv—iy
i=1
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2.3. The primitive representations

The action of the generatokél, egandf; (=12,...,N—1)is given by

+1 +2Y pi = pia =Y pia—1
kl Ip) =gq (23 i1 Pit—22110 Pid+1— 22121 Pid-1 )|p>

l

Z P1(jl; p)P2(jl; p)

P1(jl; pj1 + D Pa(jl; pjr + 1)
= P3(jl; pji + 1)

elp) = |pji +1)

where|p;; = 1) denotes the state differing frofp) by only p;; — p;; £1, and

I+1
PGl p) = | [Leij(pissa — pia + D]Y?
i=1
-1
Py(jl; p) = 11[8,»,-@,-,1 — pirn]Y? (2.8)

]

P3(jl: p) = [ [lei(pia — pi)"?[ei(pia — pia + DIY?
i=1
i#]

¢ij being the sign defined by

1 for i<
gij = (2.9)
-1 for i>j.

In the following, we takeg to be a root of unity ancp;; asintegers Letm be the
smallest integer such that" = 1. We will consider only the case of odad in this paper.
A similar discussion is valid whem is even.

Here we considethe quantum analogue of classical (highest weight and lowest weight)
irreducible representationwith a highest weight that obeys

DIN — DNN > M. (2.10)

When ¢™ = 1 these representations are not always irreducible, since someaingular
vectorsarise in the corresponding Verma module, that are not obtained from the highest
weight vector by the action of the finite-dimensional Weyl group. Quotienting by the sub-
representations generated by the singular vectors leads to new irreducible representations
that we callspecial representations

2.4. Adaptation of the Gelfand—Zetlin basis and special representations

Letn; and 77,’-1 be, respectively, the numbers of zerosRat jI; p), P>(jl; p) and P3(jl; p).

We note that the maximum value gf is/—1. If a primitive vector from the right-hand side

of (2.7) does not belong to the module under consideration, then the corresponding term
is zero @;; > nj;). If an equal number of factors in the numerators and denominators are
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simultaneously equal to zerg,{ = n;,), they should be cancelled out and the corresponding

primitive vector here belongs to the module. n;.f, > nj;, the matrix elements of; are

undefined. Next, we will show how to eliminate the divergences of the matrix elements

using a change of bases. This method will be illustrated on a simple example in section 3.
Suppose

nit=0 and my=1-1 1<j <! (2.11)
ie.
pusi—pi+1#0m  1<i<i+1 1<) <
pjt — pii—1 # 0 [m] 1<j<! 1<i<i-1 (2.12)
pit — pji = 0 [m] 1<j<l! 1<i<l!
thus, there exisBs, B2, ..., B;—1 € Z, such that
Pil — Pi+11 = Bim 1<i<i-1

o (2.13)
pii— pju=Bi+Biy1+--+ Bj—vm J>1i.

The action off; over a state satisfyin¢?.12) produces in the right-hand side (#.7) a set
of states{|py, ... p},--- pu), 1 <i <1}, where

, {pi1+(ﬁ1+~-~+ﬂ,~1)m for i>1
Py =

pu—1 for i=1
. (2.14)
;o pu—1—(B1+ -+ Bi_)m for i>1
Pir= pu—1 for i=1
this set is called a set @afpe py — 1 or ({1}, {2,...,1}).
Definition 1 Let a state satisfy
pu—puEtp=0[ml,i=2...,1 1<|Bl<m—1
.. (2.15)
pii — pji = 0 [m] ij=2,...,1.
This state is called a state tfpe py or ({1}, {2, ...,1}). Define the operation
my(py - pir--.pu)) =Py Py pu) (2.16)
where
, pii+ B+ + Bi—)m for i>1
Pu for i=1
, pu—(PBr+- -+ Bi—)m for i>1
Py = { . (2.18)
pPu for i=1.

This operation is calledexchange mapping of levdl centred on 1 and the set

{lpy - Pl pu), 1 < i < 1}is of type py or ({1},{2,...,1}). This set of states has

the same eigenvalues for the Cartan operators (degenerate states) and has to satisfy the
triangular inequalities.
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Lemma Let a state satisfy the conditiof2.15), and let{|p}, ... p;,--- pu), 1 < i < I}
be the set of all states obtained by action of the mappifjgover this state. This set is
isomorphicto a set obtained by action of the mappirfg over a state dfypep,,FB(u # 1).

Proof. Let a state be of typ€{1},{2,...,1}, i.e.
pu — pu+p=0[m] i=2...,1 1<pl<sm—1
pit — pji = 0 [m] i#l and j#1
and let
ﬂiu(|Pll~-~Pul~-~Pll>) =lpuxB...puFB...0u).
The state in the right-hand side is ype p,; + B(u # 1), and
nfw o n{u =ni,. (2.19)

All states of the se(2.14) are obtained by action of the mappimg,. over the state
lpu —1...pu...py). Using this notation, the action of is

l . .
Pi(jl; p)P2(jl; p), /
filp) = . |py - Pjp---pu)- 2.20
_,; P3(jl; p) vt (2.20)

We note that the number of zeros in the polynomigds;/; p) is i — 1.
Definition 2 Let a set be a state ¢ofpe ({1}, {2, ...,1}), i.e.
pu—pu+p=0[m] 2<i<! 1<|psm-—1

and let the new basis be given by

I
Py Piy--pu) =Y Dillpy - ply - pu) (2.21)
=1

whereD is al x [ rotation matrix, i.e.
D'-D=D.-D' =1. (2.22)

This new basis is called thmodified basis of typ€1}, {2, ...,1}). The primitive and the
modified sets satisfy the triangular inequaliti@sb).

The finiteness of the matrix elementple; fi|p) and (p|fie/|p) (preserve ¢, fi] =
’;’__k’,l) imply that there exists a modified basis such that the new matrix elements are
without divergences. Using this definition, the equati@r?0) is reduced to

1 ) . .

P1(jl; p)P2(jl; p) p /

Silp) = ( . Dji \llpy - i --- Pu)
: ;; Ps(jl: p) J)RE e R

1
= Aullpy .- Pl pu) (2.23)
i=1
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where, A;; are the new matrix elements associated to the modified basis, i.e.

1<i<l. (2.24)

) . .
P1(jl; p)P2(jl; p)
Ay = E Paji: Dj;
i 3(J1; p)

These matrix elements are called tinedified matrix elementsGenerally, we choose

L p20:7. N p20ir. o\ 12
Ay = (Z P{(jl; p)P5(jl; p))

=  PiGLDp (2.25)
Ay =0 2<i<l
i.e.
! 20 7. 20 7. 1/2
P;(jl; p)P5(jl; p)
filp) = ( L . lpu —1...pu). 2.26
; P{(jl; p) (2.20)

We note that the matrix element ¢2.26) is finite (i.e. without divergences).
We are now able to claim this generalization,

Definition 3 Let a collection{I;,k € J C NN} of subsets of{1, ...,![} satisfying the
following conditions:

0) if k<s Viel, Vjel, thus i<
(i) LN, =9 if k#s (2.27)
(iii) Un=..1n
ked

and where
pii — pji = [m] i,jely i<j

! , . (2.28)
pit — Pji = Sks[m] iely jel, k<s 1< |Gl <m—1.

This state is called a state tfpe (I, k € J C N). Let ”/ﬁs;u be theexchange mapping of
levell between the subsels and I; (k < s), i.e. if

Pit — Pjt = ks + (Bi + Bigr + - + Bj—vm (2.29)
we have

Tagij\PU - Pit - Pjt- - pu)) = pu .. Py Py - pu) (2.30)
with

P =pi+ Bi+Bis1+ -+ Bi—m = pi + Lk

, (2.31)
pji=pi— Bi+Biva+ -+ Bj-)m = pji — s -



Special representations of, (sI(N)) 1207

The operatorg; commutes with exchange mapping

;.;j- Let|p) be the state satisfying
(2.28) and (2.29). Define

Vi, ke J) = : 1_[ Thesaiiaju UPU - Dil - Pj1---PU)) ( - (2.32)
ko #Sa
i J
The setV,(I;, k € J C N) is obtained by all possible changes between the different subsets
I (k € J). We note that the all states &f(I;, k € J C N) have the same eigenvalues for
the Cartan operators.
For example,

J={1) L={1..1 dimv, =1
J=1{12 I = {1 L={2...1 dimy, =1
J=1{1,2 I, =1{1,2 L=1{3....1} dimv, = 311 — 1).

Definition 4 Let a new basis given by
]
Py Pl -pu) =Y Dillpy - Py ) (2.33)
j=1

where the state$py,...pj,...py) are in the setVi(I,k € J C N) and D is a
dimV, x dimV; rotation matrix. This new basis is called theodified basis of type
(Ix,k € J C N) . We note that the primitive and the modified bases satisfy the triangular
inequalities. The set of statdlp); . ..p_;, ... pu) is denoted by, (I, k € J C N).

Using definition 3, the action of; over a modified state dype({1}, {2, ..., }) produces
two sets of states, respectively, t9pe ({1}, {2, ...,1}) and {1, 2}, {3, ...,1}). The matrix
elements of {1}, {2, ...,1}) — ({1}, {2, ..., 1}) do not contain divergences (see the structure
of P3(jI; p)). But if the matrix elements of{{}, {2,...,[}) — ({1, 2}, {3, ..., 1}) contain
some divergences, using definition 4 we take a rotation in this second set in such a way as
to eliminate these divergence&l(e; f;|p) and (p| fie;|p) have to remain finite). We have
to repeat this mechanism as far as the elimination of all divergences of the Gelfand-Zetlin
representations.

) ey I e

fi
({17 2}7{37“'7 l})

fi

({17 2, 3}7 {47 T l})

Figure 1. Different transitions between the types of sets in the casé; gl (N)).
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3. Applications

3.1. Explicit construction of the special representations

In the following, we present in detail the explicit construction of special representations for
N = 3. We will consider only the operator§ and f», a similar discussion is valid for;
ande,. The primitive Gelfand—Zetlin state for this particular case is just

D13 P23 P33
D12 D22 (3.1)

p11

|p) =

where p33 is chosen to be equal to zero. The actions of the genergioend f> for
Ug (s1(3)) are given by

fulp) = (p12 — p11+ Ulp11 — po2 — IDY?p1a — 1) (3.2)

[p13 — p12+ 1[p12 — p23 — 1lp12 — p33 — 1l[p12 — p11l >1/2|p12 _1
[p12 — p22l[ p12 — p22 — 1]
+ ([Pls — p22+ 1[p2s — p2z2 + 1][p22 — p3s — L[ p11 — p22] )l/zlpzz— 1)
[p12 — p22ll p12 — p22 + 1] .

falp) = (

(3.3)

We note that in this case there are only two types of ggiis2}) and ({1}, {2}) and the
maximal number of zeros in the denominator of the matrix elements is only one.
Now suppose that

piz— pj2+1#0 [m] 1<i<3 and 1<j<2 54

piz — p11 # 0 [m] 1<i<?2 :
ie.

Mz =n2=0. (3.5)

The matrix elements of, are infinite if

() P12 — p22 = 0 [m]
(i) p12— p22+1=0 [m] (3.6)
(i) p12—p2—1=0][m].

Case (a) Let a state satisfy the following conditions:

p12— p22 =0 [m] or P12 — P22 = Bm BeZ, (3.7)

Mo =np=1. (3.8)
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(L2 —2 ey~ (@
fa
({1, 23)
fa
({1}, 20

Figure 2. Different transitions between the types of s, 2}) and ({1}, {2}) in the case of
Uy (s1(3)).

The action of f, on this state give

K K
folp12 p22) = WU’H —1 p2) + Wmu p22—1) (3.9
where
k = ([p13— paz + 1[p2s — p22 + L p22 — pss — 1lp11 — p22)*?. (3.10)

Using definitions 3 and 4, the relation between the primitive and the modified states is

( |p12 — 1 p22) ) — D(¢) ( lp12 — 1 p22) )
|p22+ Bm p1o—1— Bm) | p22 + Bm p1o—1— Bm)

|P12—1 p22) | _ P12 — 1 p22)
(|P12 P22 — 1)) = D@ <||p12 Po2 — 1)) (3.11)

for any values ofpy1 satisfying the triangular inequality, respectively, for the primitive and
the modified basis, and where

([m —1] )1/2 <[m + 1] )1/2

D($) = [210m] [210m] . (3.12)
D )
m m

Using the trivial identity,

la+1] [a—1]
2lla] ~ [2la]
the right-hand side of (3.9) is reduced to

(3.13)

[21 13 — P22 + Llp2s — paz + LUlp22 — paz — Ulpr — pazl \7?
f2lp12 p22) =
[p12 — p22 — 1][p12 — p22 + 1]

X | p11 p22—1). (3.14)
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This equation corresponds to the transitigh, 2}) — ({1}, {2}).
In this case the action gf; over the modified Gelfand—Zetlin basis is given by

([p12 — paddl p11 — p22 — DY p12 — 1) ppy1 if  p11# pe+l
fullpz =1 = [m — 1]([m[;] 1]>1/2|1!?22 —Dpu1 if pin=pr+l
(3.15)
and
([p12 — pa1+ Ulp11 — p22D Y21 paz — L)yt if p11#pr+1
fullpz = 1) = <[m[2_]l]>1/2|1922 A if  p11=pn+1.
(3.16)
Remark If
p12— p22+1=0[m] i.e. pi2—ppn+1l=pm (BeZy) (3.17)

the relation between the primitive and the modified basis is given by

|p12 p22) _ | p12 p22)
( 1>) — D) ( ) (3.18)

[pr2+ 1 p22— lpi2+1 p22—1)
with
1/2 1/2
< . [p12 — p22] 1 ! 2[P12 —p2+ 2]1 /

2l p12 — P22+ 1] 2l p12 — p22 + 1]

D(¢) = ]_/2 1/2 (319)
| [p12— p22+2] [p12 — p22]

2]l p12 — P22 + 1] [2l[ p12 — p22 +1]
Case (b) For a state satisfying the condition

p12— p22+1=0 [m] i.e. pio—pnt+l=BmBez;) (3.20)

the correspondence between the primitive vectors and the modified vectors is given by the
following formulae:

Ip12 p22) — |p12 p22)
(||P12+1p22—1)>_D(¢)<|p12+1p22_1)> (3.21)

where D(¢) is given by (3.19). If we take a extension of the definition of the modified

formula
( P12 —1 p22) ) — D(—¢) ( |p12 — 1 p22) )
| p22 + Bm p12—1— Bm) |p22+ Bm p12— 1— Bm)

lp12 — 1 DP22) . B |p12 — 1 p22)
(||P12+1P22—2)>_D( ¢)<|p12+1p22—2)>' (3.22)
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The action of />, over the modified states is reduced to

_ (Ip1z— p12+ Ulp1z — pas— Ulp1z2 — pss — Ulp12 — pul \?
f2llp12 p22) =
[P12 — p22l[ P12 — p22 — 1]
X [|p12 — 1 p22) (3.23)

and

fallpiz+ 1 p22 — 1)
_ (Ip1s— paa+ 2l[pas — paz + 2l[p22 — pas — 2lpu — pa2 + 1]\"?
B ( [P12 — p22+ 2][p12 — p22 + 3] )
X [|p12+1 p22—2)
+ <[2][1713 — p22+ Ulp2s — p22 + 1l[p22 — psz — Ul p11 — p22] )1/2
[P12 — p22l[ P12 — P22+ 2]
X |p12 p22 —1). (3.24)

We note that the statépi, poo — 1) is of type (1,2}). The equations(3.23) and
(3.24) correspond, respectively, to the transitiofi$}( {2}) — ({1}, {2}) and ({1}, {2}) —
({1}, {2h + (L. 2p.

Remark For example, the action of, over the extensioti3.22) gives

fallpiz — 1 p2o)
_ ([Pls — p12+ 2][p12 — p23 — 2][p12 — p33 — 2][p12 — p11 — 1] )1/2

[p12 — p22 — [p12 — p22 — 2]
X |p12 — 2 p22)

([Plz — p22+ 1][p23 — p22+ L[ p22 — p3z — 1[p11 — p22] >1/2
+
[p12 — p22 — L[ p12 — p22]

X |lp12—1 p22—1) (3.25)
where
P12 — 2 p22) o |p12 — 2 p22)
(||p22+ﬁm p12—2—,3m)> =P (|P22+,3m p12— Z—ﬂm)> (3.26)

Ip12—1 p2o—1) o Ip12—1 paz — 1)
(llpzz—l—l—ﬁmplz—l—ﬂm))—D( ¢)(|p22—1+,3mp12—1—,3m)>' (3.27)

Case (c) The discussion is similar to the case (b). Let a primitive state satisfy the following
condition:

p12— p22—1=0 [m] in p12— p22—1=Bm BeZy). (3.28)

Define

| P12 p22) o |p12 — 1 p22)
(Ilpzz+ﬂm plz—ﬁm>> =D(=9) <|p22+/3m plz—ﬁm>)
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P12 p22) ol |p12 p22)
(||P12—1P22+1))_D( ¢)(|P12—1p22+1)) (3.29)

and take the extension

( | P12 p22 — 1) ) =D(—¢)< lp12—1 p2—1) )
P22 — 1+ Bm p12 — pm) |p22 — 1+ Bm p1o— pm)

i.e.
lp12 p22 — 1) |p12 p22 — 1)
= D(— 3.30

(||p12—2p22+1>) ( "”(|p12—2p22+1>) (3.30)

where
172 172
<2 [p12 — p22] 1>/ _({2[]1[712—1?22—2]1])/
P12 — p22 — P12 — p22 —
D) = 12— D22 » 12— D22 . (3.31)
[p12 — p22 — 2] [p12 — p22]
2l p12 — p22 — 1] 2l p12 — P22 — 1]
Finally, we obtain
fallpz p22)
_ ([Pls — p12+ 1[p12 — p23 — 1][p12 — p3s — L[ p12 — pul )1/2
[p12 — p22ll p12 — P22+ 1]

X | p12 p22 — 1) (3.32)
and
fallpiz—1 poa+ 1)

_ ([Pls — p22+ 1[p23 — p22 + 1[p22 — p3z — [ p11 — p22] )1/2
[p12 — p22ll p12 — p22 + 1]
X [|p12—2 p2o+1)
+ ([2][1?13 — p12+1][p12 — p23 — L[ p12 — p3z — L[ p12 — pul )1/2
[p12 = p22ll p12 — P22 — 2]
x |p12—1 p22). (3.33)

We note that the statépi, — 1 pop) is of type (1,2}). The equations(3.34) and
(3.35) correspond, respectively, to the transitiofi$}( {2}) — ({1}, {2}) and ({1}, {2}) —

({1}, {2}) + ({1, 2}). For example, this method describes successfully the representations of
Ug (s1(3)) of dimension 15 fomm = 3 (p13 =5, p2s = 2, ps3 = 0).
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3.2. A example of explicit construction of flat representations

Flat representations were first discovered by Dobrev in [3-5]. These representations have
also been studied in [11, 12]. Here we are interested by the explicit construction of flat
representations using the primitive Gelfand—Zetlin pattern. Our aim is to show that the
Gelfand-Zetlin basis is very adapted for the situation.

In [1], we have introduced some parameterbteak the symmetry between the actions
of ¢, and f;. They were taken to be (%, or 1. A good choice of these parameters permits
the elimination of the singular vectors (these singular vectors are states arising in the right-
hand side of2.7) but do not obey the triangular inequalities) in a natural way. If an equal
number of factors in numerators and denominators are simultaneously equal to zero, and
if the vector from the right-hand side @R.7) is a singular vector, we can adjust these
parameters such that the number of zeros in the numerator is greater than the number of
zeros in the denominator. This procedure successfully describdisithepresentations, i.e.
when

piv — pvy =m+ 1. (3.34)

For example, the representationsQf(s/(3)) of dimension 7 fom = 3 (p13 = 4, p23 = 2,
p3s = 0) is described by

flp) = (p11 — paz — 1DY?p1— 1)
_ ([p1z— p12+1l[p12 — pas — lpio— psza—1
falp) =
[P12 — p22 — 1][p12 — p22]
([P13 — p22+ L[ p23 — p22+ L[ p11 — p22]
+
[p12 — 22+ 1 p12 — p22]

1\2
) [p12 — pullpi2— 1)

172
) [p22 — p3z—1]lp22—1)
(3.35)

1/2
e1lp) = [p12 — p11l <[P11 - P22]> Ip11+1)

eslp) = ([P13 — p12ll p12 — p23ll P12 — p33l )1/2|p12 +1
[p12 — p22 + L[ p12 — p22]
_ B o A\Y2
n ([Pls p22l[ 23 — p22ll p11 — P22 ]) poa+ 1)
[P12 — p22 — 1][p12 — p22]

Figure 3. Representations dff,(s/(3)) of dimension 7 for

/
(‘no multiplicity) -
m=3.



1214 B Abdesselam

we remark that

and

4 2 0 4 2 0
fil 3 2 )=f| 3 2 =0 (3.36)
3 3
4 2 0 4 2 0
el 3 2 J=e| 3 2 }=o0 (3.37)
3 3

the others states form just the irreducible representations of dimensioo myltiplicity).
A similar method also describes the representations of dimension 18 for5 (p;3 = 6,
p23 = 2, ps3 = 0) (see the figure in [11]).
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